大型客车车身结构及焊装工艺分析


相比很多地方政府控股,但政府又没钱投入的重卡企业而言,大运重卡因为资金充裕,投资到位,因此在建设上可以按照比较高的标准来进行。

图片 1

大型客车车身焊装是大型客车生产中的一个重要环节,车身焊装质量是影响大型客车整体质量优劣的重要因素之一。针对大型客车车身结构特点及其工艺性,在本文中将重点分析焊装工艺、设备、夹具的特点,总结我国大型客车车身焊装生产现状及与国际水平的差距,希望通过我们共同的努力,能不断改进国产大型客车车身焊装生产工艺,提高车身焊装质量。大型客车车身结构特点大型客车车身是由底骨架、左/右侧围骨架、前/后围骨架及顶围骨架等6大片骨架经组焊蒙皮而成,是一骨架蒙皮结构。根据客车车身承受载荷程度的不同,可把客车车身概括地分为半承载、非承载、全承载式三种类型。1、半承载式车身半承载式车身结构特征是车身底架与底盘车架合为一体。通过在底盘车架上焊接牛腿、纵横梁等车身底架构件,将底盘车架与车身底架进行焊接连接,然后与左/右侧骨架、前/后围骨架及顶骨架组焊成车身六面体。车身底架与底盘车架共同承载,因此称为半承载式车身。2、非承载式车身非承载式车身的底架为独立焊制的,是矩形钢管和型钢焊制的平面体结构,比较单薄。车身底架与左/右侧骨架、前/后围骨架及顶骨架组焊成车身六面体,漆后的车身要装配到三类底盘上,由底盘车架承载,因此称为非承载式车身。3、全承载式车身全承载式车身底架为珩架结构,由矩形钢管和型钢焊制而成,底架与左/右侧骨架、前/后围骨架及顶骨架共同组焊成车身六面体。漆后的车身采用类似轿车的装配工艺,在车身上装配发动机、前后桥、传动系等底盘部件,因此客车已无底盘车架痕迹,完全由车身承载,因此称为承载式车身。三种结构车身的焊装工艺性1、半承载式车身半承载式车身是在三类底盘上焊制的,生产中底盘自始至终要经过生产的各个环节,因此在焊装生产中也产生一些工艺问题。如:由于底盘大大增加了车身质量,使车身在焊装线工序运输中不灵便,人工推运困难,往往需要增加机械化输送机构;此外,由于车身六面体合焊时需要在合装设备中定位底盘,为此合装设备需要设计底盘举升机构用于底盘二次定位,因此增加了合装设备造价。目前,国内只有少数小型客车厂或某些客车厂的少量车型因生产技术和生产能力所限仍沿用这种工艺。2、非承载式车身非承载式车身在焊装生产中不带底盘,车身结构相对简单,易组焊且重量轻,焊装线工序运输方便,可采用人工推运方式。而且,车身底架平整的下平面易于车身六面体组焊定位,不需要举升二次定位,生产效率高。非承载式结构车身适合大批量生产,目前,国内大型客车厂采用这种生产工艺较多。
3、全承载式车身全承载式车身的底架是由矩形钢管和型钢焊接的格栅式空间结构,与半承载和非承载车身底架比较,其焊接工作量大,底架夹具结构复杂。此外,行李仓内板、仓门的制作和焊接研配的工作量均较大。但其具有整体刚度好,车身承载程度高、构件受力较均衡、重心低、便于在地板下布置行李仓和空调装置的特点。从技术角度看,全承载式车身结构是比较理想的结构形式。西方工业发达国家早在上世纪30年代就开始研制了这种结构车身,现在已很普及。而我国在这方面起步较晚,在上世纪90年代中末期才开始引进这种车身技术,目前主要用于豪华大型客车的生产上。车身焊装工艺分析1、六大片骨架预制□?前/后围骨架、左/右侧骨架总成前/后围骨架、左/右侧骨架是由各种矩形钢管和型钢焊制的,采用弧焊工艺。国内客车厂通常采用半自动CO2焊机焊接,国外先进的客车厂在部分分装工序采用弧焊机器人焊接。左/右侧骨架可采用”人”字形立式夹具,也可采用卧式固定夹具。不同的夹具各具特点,立式夹具节省摆放面积,但需配置电动升降台或踏台;
卧式夹具占用面积较多,操作相对简单。前围骨架总成结构较复杂,一般为驾驶室式空间结构,其夹具为固定式。在焊装夹具制造水平方面,国内外尚存在一定差距。国外夹具制造精度高,通常采用气动或液压夹具,焊后总成尺寸精度高,调整工作量小;而国内大多数客车厂为节省投资,夹具制造精度较低,大多采用靠模式,配以少量手动夹紧器,焊后总成尺寸精度较差,调整工作量大。此外,国内客车厂一般采用将各构件在总拼夹具中一次焊接成型的焊装工艺,而国外一般把大总成分解为几个分总成事先预制好,再在总拼夹具中组焊。与国内工艺相比,国外工艺可缩短生产节拍,提高焊装质量,而且操作方便。□顶围总成为实现顶蒙皮低位作业,将顶骨架与顶蒙皮的焊接在车身组焊前进行。即形成顶围总成后再进行六大片骨架合装。由于顶围骨架具有较大的空间曲线,一般采用卧式固定夹具。顶蒙皮与顶骨架之间的联结可采用拉铆、CO2弧焊、电阻点焊等几种形式。拉铆是客车蒙皮最早采用的装配工艺,该工艺劳动强度大,生产效率低。目前仅用于产量较小、车身外观质量要求不高的客车蒙皮生产。目前,我国客车车身制造采用的材料大多是表面无镀层的低炭钢板和钢管。由于客车产量所限,考虑涂装生产的经济性,许多客车厂车身总成进行整体前处理难以实现。为提高车身防腐性能,骨架构件和蒙皮件焊前需经磷化处理喷涂底漆,而采用的大多为廉价的导电性差的环氧类底漆。由于环氧类底漆层的存在,采用电阻点焊工艺难以形成牢固的焊点。CO2弧焊工艺则能穿透工件表面导电性差的底漆层牢固焊接,因此这种工艺适用于蒙皮与骨架焊前涂有环氧类底漆的车身蒙皮焊装。其缺点是弧焊破坏底漆层的范围及焊接变形相对较大,顶围防腐蚀性能及外观质量均不如电阻焊工艺;
此外,由于底漆层的存在, 焊接时产生更多的焊烟。
国外先进的客车厂大多采用镀锌钢板和钢管焊制车身。因此,骨架构件和蒙皮件在焊接前不进行前处理,焊后在焊缝区涂磷化液
(有些厂进行骨架整体喷磷处理),然后喷涂底漆。底漆后进行车身蒙皮。由于国外采用的是导电性良好的富锌底漆,因此,其客车蒙皮均采用电阻点焊工艺。电阻点焊工艺在许多方面优于CO2弧焊工艺,其对工件表面的涂层破坏小、焊接变形小、劳动条件好、生产效率高。目前,在国内客车制造业中,由于价格方面的原因,镀锌钢板和钢管以及富锌底漆用的不很普及,仅在少数客车厂的引进豪华车型中获得应用。个别大型客车厂采用无镀层的普通钢板和钢管焊制车身,为在车身蒙皮工序中采用电阻点焊工艺并提高车身防腐性能,采用车身焊后整体电泳前处理的工艺方法,这种方法由于涂装设备投资及生产运行费用太大,绝大多数客车厂难以采用。还有部分客车厂采用传统的车身制造工艺,即骨架和蒙皮件在零件状态下进行磷化处理喷涂底漆,车身蒙皮前在骨架和蒙皮贴合处进行局部抛磨,去除底漆后再进行电阻点焊的方法,但这种方法劳动强度大,
生产效率低,在客车行业也难以推广。采用镀锌钢板和钢管焊制客车车身,不但方便蒙皮采用电阻点焊工艺,而且可以显著提高车身防腐蚀性能,代表着客车车身制造材料的发展方向。随着国内经济的发展,钢材及涂料生产技术的进步,
镀锌钢板和钢管以及富锌底漆在客车生产中的应用也将会越来越普及。国内顶蒙皮电阻点焊设备水平已与国外持平。根据客车产量的不同,可采用手动点焊和自动点焊两种形式。手动点焊采用悬挂式单面单点焊机或单面双点焊机。单面单点焊比单面双点焊工艺优越,其焊接电流分流小,不易形成虚焊点。自动点焊采用顶蒙皮自动点焊专机,该专机由张紧机构、行走式龙门架和固定在龙门架上的点焊机组成。顶围漏雨也是困扰客车生产的主要问题之一。生产中一般采用在顶盖边蒙皮和中蒙皮的搭接处焊后涂密封胶的方法,但不能从根本上解决漏雨问题。由于此种工艺投资少,在中小型客车厂仍然采用。早在20世纪80年代初,国外先进的客车厂就将缝焊技术应用于顶蒙皮焊接,采用缝焊工艺将车顶三条纵向蒙皮焊成一个完整的蒙皮后,
再点焊到顶骨架上,从而彻底杜绝了顶围漏雨问题。20世纪90年代以来国内开发研制的顶蒙皮自动缝焊机在国内客车厂获得了应用。该设备由移动式工作台和安装缝焊机的固定式龙门架组成,设备工作时,工件随着工作台渐进移动,龙门架上的两台缝焊机同时完成两条纵缝的焊接。由于该设备投资较大,一般仅应用于少数大型客车厂。在顶蒙皮上开天窗孔是顶围生产中的又一生产环节。国外一些客车厂采用活动式冲孔模冲天窗孔。用手电钻在要开天窗孔的蒙皮处钻一小孔,
将上模放在顶蒙皮上方, 下模放在下方,
再将油缸活塞杆穿过中心孔把上下模连结起来, 开通高压油,
上下模合拢冲出天窗孔。这种方法生产效率高, 冲出的天窗孔周边平整光滑,
质量好。目前,国内客车厂仍采用在顶蒙皮上划线,然后用空气等离子切割机切割或用剪刀剪切方法形成天窗孔。这种方法形成的窗孔尺寸精度差,
切剪后修边工作量大,
生产效率低。在此方面国内外尚存在一定差距。□底骨架总成半承载、非承载、全承载式车身的区别主要在于底骨架的结构不同。半承载式车身底架为改制的底盘车架,
是通过在车架纵梁上焊制牛腿、纵横梁等构件形成底架。由于底盘形状复杂,不便采用夹具,一般采用直尺和角尺划线,用各种支架辅助定位。焊后精度较差、调整工作量大。非承载式车身底架结构较简单,是由各种矩形钢管和型钢焊制的平片式结构。可采用翻转夹具或卧式固定夹具焊接。翻转夹具焊接操作方便、节省面积,而且由于是在夹具中完成正反面焊接,因此焊接变形小,但夹具的制造费用较高。全承载式车身底架为格栅式空间结构,夹具均采用固定式。为保证与左/右侧骨架的装配精度,焊后底架众多的端头需要有准确的装配尺寸。生产中采用两种办法加以保证:一种是提高零件下料尺寸精度和焊装夹具制造精度,焊后辅以少量的手工磨削,使之达到装配精度要求;另一种是采用行走式自动切割机完成此项工艺。后一种方法生产效率高,但设备投资较大。□车身六大片骨架组焊车身六大片骨架组焊是客车车身焊装生产中的关键工序。该工序不仅决定着客车车身六面体的装配尺寸精度,而且也是制约车身焊装线生产率的咽喉工序。为提高装配精度及生产效率,国内外先进的客车厂均采用专用合装设备一次完成车身六面体定位组焊成型。该设备由车身底架定位机构、左/右侧骨架夹紧机构、前/后围定位机构、顶围吊运装置及动力系统组成。根据承载车身的运输机构是否从合装设备中间通过,该类设备可分为通过式和非通过式两种。通过式合装设备的结构相对复杂,其底架定位机构由整体式工艺车和举升机组成。整体式工艺车是加工精度很高的底架夹紧定位、运输机构,其上面的定位装置可调,可满足不同尺寸的底架定位要求。整体式工艺车承载着底架进入合装设备初定位后,由举升机将工艺车举起进行二次定位。当完成车身六面体组焊后,合装设备回位,举升机回落。若底架结构差别较大,如非承载、半承载、全承载式车身混线生产,可采用不同的工艺车。因此,通过式合装设备能够满足各种类型大客车车身组焊需要。缺点是设备投资较大。非通过式合装设备的底架定位机构是固定在合装设备中间的平台式结构,其与车身底架的接触面大,车身底架受力均衡,因此特别适合于底架刚度差的车身骨架组焊,如非承载式车身组焊。非通过式合装设备的结构较通过式的简单,因此造价低。缺点是车型适应性相对较差,如:不适合半承载式车身组焊;底架高度差别较大时,车身高度方向的装配基准线调整不便等。车身骨架合装设备具有一定的生产柔性。通过在合装设备上同时设计布置几种车型的夹紧机构,可以进行同系列不同车型混线生产。此外,合装设备的左/右侧各夹头安装在横向滑槽上,可左右调整,
横向滑槽又可沿纵向滑槽上下调整,通过调整各夹头的位置或更换部分夹头,可以生产更多种车型,但这种调整工作量很大,仅能分期分批生产,不适合混流生产。2、左/右侧蒙皮及前/后围蒙皮
□左/右侧蒙皮大型客车左/右侧蒙皮一般采用预应力蒙皮工艺,通过将侧蒙皮钢板张拉到预定长度后焊接到侧骨架上,使钢板内保持一定的残余拉应力。预应力蒙皮可使蒙皮平整美观,运行鼓噪小,能显著提高车身骨架的刚性和强度。根据钢板内残余应力形成机理的不同,预应力蒙皮分为热应力蒙皮和拉应力蒙皮两种。□热应力蒙皮热应力蒙皮是通过在钢板上通以低电压大电流的电,使钢板发热伸长(电热延伸率约为1‰),然后迅速焊接在侧骨架上。冷却后钢板收缩,使之张紧挺直。热应力蒙皮设备由变压器、工艺架、导电机构组成,其占地面积小,投资少。该工艺主要优点是:钢板受热后沿纵横双向膨胀,冷却后蒙皮内的残余应力为双向应力,可使车身受力更均衡;由于钢板是受热膨胀,可不受车身外形是曲线还是直线的限制;生产柔性好、效率高。缺点是对工艺要求比较严格,如:拉伸质量易受人为因素的影响,关闭电源后,焊接操作必须迅速,否则钢板降温过大,延伸率降低,焊后残余应力值过小,影响拉伸效果;控制不当会造成过热引起钢板氧化等。□拉应力蒙皮拉应力蒙皮又可分为手工张拉和机械张拉两种。手工张拉是采用夹紧器和丝杠,靠人工的力量拉伸钢板,拉力较小,拉伸后钢板弹性变形不大,残余拉应力较小,对车身整体刚度及强度提高不大,但对改善蒙皮外观质量、降低鼓噪声仍能取得一定的效果。机械张力蒙皮是用机械张拉机将钢板拉伸到预定的长度,再焊接到侧骨架上的工艺方法。机械张拉机主要由液压系统、电控系统、前/后拉伸架体组成。该工艺主要优点是:拉伸质量稳定、操作方便、生产效率高;拉力可调,可针对不同规格的钢板设定最佳的拉力,使蒙皮获得最合适的残余应力;由于拉力大,完全能够消除钢板本身不平整的缺陷,因此拉伸前对钢板平整度要求不高,可直接采用卷材拉伸;拉伸架体可沿轨道做较大范围的移动,适合不同长度的车身侧蒙皮机械张拉蒙皮因本身工艺条件宽松,适应性强,能最大限度地满足用户的使用要求,已成为国内外大中型客车厂首选的侧蒙皮装配工艺。考虑侧蒙皮的美观性,侧蒙皮与侧骨架之间的连接一般以电阻点焊为主,CO2弧焊为辅。□前/后围蒙皮大型客车前/后围蒙皮件有钢板冲压件和玻璃钢件两种。钢板冲压件蒙皮一般采用若干块冲压件进行拼焊,这是由于前/后围蒙皮件形状较复杂,外形尺寸又大,若采用大块钢板冲压成型需购置大台面的冲压设备及模具,由于产量所限使得生产成本过高。焊接工艺采用电阻点焊工艺或CO2弧焊工艺,在蒙皮板搭接处辅以铜钎焊工艺。CO2弧焊对产品结构适应性强,但焊后工件变形较大,增加了修磨及调整工作量,生产效率低;电阻点焊工艺焊接变形小、生产效率高,但要求蒙皮与骨架要有良好的贴合面,由于前/后围蒙皮及骨架结构较复杂、空间曲线度大,对许多设计及加工不十分严格的产品来说这一点很难做到,这也是影响电阻点焊工艺在前/后围蒙皮中应用的主要原因。玻璃钢蒙皮是将整块模压成型的玻璃钢件通过粘接胶贴敷到前/后围骨架上,并通过预埋在玻璃钢中的连接角铁与左/右侧骨架、顶骨架和底骨架焊接在一起。采用玻璃钢件可获得整块大曲面度的前/后围蒙皮,其造型美观,安装操作方便,劳动强度小,生产效率高,因而在客车生产中用的较普遍。3、车身焊装线运输方式大型客车车身焊装线工位间运输方式根据产量的不同,可以采用人工推动、地面链拖动、板式带和滑橇运输系统等几种形式。人工推动工艺车的运输方式劳动强度较大,但因其组织生产非常灵活,不需要运输设备投资,在国内客车厂中应用很普遍。地面链输送设备结构简单,易于制造和维修。缺点是线上各工位需做不同步移动时需要工人钻到车身下脱挂钩,因此组织柔性生产不方便。由于设备投资少,在较大型客车厂中应用仍比较多。板式带与地面链相比,不需要工艺车,可省去工艺车回位的麻烦,但投资较大,国内客车厂应用的很少。滑橇运输系统是大型客车车身焊装线最先进的机械化输送方式,该系统使得工位间纵向和横向转移更加方便灵活,便于工艺布置及生产管理。系统由PC机控制,各工位可同步或不同步移动,因此易于组织柔性生产。其缺点是设备投资大,
一般中小型客车厂因资金所限难以采用。4、焊装工艺流程传统的大型客车车身焊装工艺流程为:六大片骨架预制→车身六面体组焊→补焊→焊装各种小件→修磨焊缝、骨架校正、局部补涂底漆→焊装左/右侧蒙皮→焊装前/后围蒙皮→研装各种门类件→送涂装车间进行车身面漆。这种工艺流程的特点是:在车身焊装过程中,基本不搀加涂装工艺,仅在焊缝处手工补涂快干底漆。目前国内绝大多数客车厂仍沿用这种工艺流程。国内少数客车厂通过技术引进对传统的工艺流程进行了改造。其工艺流程为:六大片骨架预制→车身六面体组焊→补焊→焊装各种小件→修磨焊缝、骨架校正→骨架整体前处理→焊装左/右侧蒙皮→焊装前/后围蒙皮→研装各种门类件→送涂装车间进行车身面漆。这种工艺流程的特点是:车身焊装工艺和涂装工艺相互交叉。这种混合流程不仅使在骨架焊装生产中破坏的底漆层得到彻底补涂,而且彻底清除了焊接操作过程中工人无意中涂抹在车身上的油污、汗水等污渍,可显著提高车身防腐蚀性能、提高面漆的附着力。据有关资料统计,国外大型客车底盘使用寿命为15年,车身使用寿命仅为10年,而国内客车使用寿命更低。因此,提高车身防腐性能越来越受到重视。在车身焊装生产环节中间增加前处理生产工艺,是提高车身防腐性能的有效措施。结束语综上所述,大型客车车身结构按其承载程度可分为三种类型:半承载、非承载及全承载式。三种结构车身对焊装生产工艺的要求略有不同。掌握客车车身结构和焊装工艺特点,以及国内外在车身焊装工艺、装备及材料方面存在的差距,对搞好客车焊装工艺设计,不断消化吸收国外的先进技术,提高国产大型客车车身焊装质量至关重要。(end)

核心摘要:9月1日,华菱单班年产5万辆重卡项目冲压、焊装、涂装车间建成并正式投产。该项目是华菱星马汽车集团“十二五”发展规划最重要的组

大运重卡厂区位于山西省运城市,占地面积1500亩,厂房总建筑面积30万平米,建成了具有比较先进工艺的的冲压、焊装、涂装、总装四大生产线,现已完成投资21亿元人民币,总资产将近40亿元。

一汽新建中重型卡车驾驶室焊装车间位于汽车厂一厂区院内,生产纲领双班10万辆。该车间是利用客底原有厂房与新建涂装车间之间的空地,新建东西向长102m、南北向宽105m的驾驶室焊装车间厂房,新建驾驶室焊装车间与原有客底厂房及新建涂装车间贴建。产品及工艺特点1.产品种类及参数中重型卡车驾驶室分为六大系列,按整车不同配置,配备在5~30t中重型卡车上,驾驶室外形美观,司机视野宽阔,驾驶室刚性、强度高,安全性好,属于中高档产品。2.产品结构驾驶室焊接总成是由车身下部焊接总成、左/右侧围焊接总成、后围焊接总成、前风窗内、外上梁焊接总成、顶盖焊接总成和左/右车门焊接总成等组成,共有247种冲压件。

9月1日,华菱单班年产5万辆重卡项目冲压、焊装、涂装车间建成并正式投产。该项目是华菱星马汽车集团“十二五”发展规划最重要的组成部分,于2010年6月正式动工,总投资11.84亿元,总建筑面积14万平方米,包括冲压、焊装、涂装、总装四大工艺生产线及相关辅助设施,其中总装生产线已于2011年8月份正式投入使用。

“工欲善其事,必先利其器”,有了好的厂房和设备,大运重卡就走出了竞争的第一步。(据记者了解,8年前,福田汽车进入重卡领域时,投资是6亿多元,5年前,江淮汽车进入重卡领域时,投资也是6亿多元,南汽当年投资凌野重卡时,投资业不超过10亿元。)

图1 驾驶室焊接总成结构分块

该项目在设计理念上体现了先进性、节能环保、人性化、高效率和信息化等特点,厂房采光性好、安全系数更高,工人工作环境大大改善,很多工艺及设备达到了国际先进水平,将进一步提升产品质量、提高生产效率、降低劳动强度,是国内先进、自动化程度最高的重型卡车生产基地之一。

下面就让我们来了解一下大运的厂房情况:

3.产品的工艺特点换代驾驶室车身焊接总成采用的工艺方法有点焊、CO2焊、凸焊螺母、凸焊螺栓、螺柱焊和涂胶等,以点焊为主。点焊还有三层板焊接,顶盖与驾驶室腔体是焊接而成,地板、左/右侧围和后围等部分相互连接处内、外表面均有焊点,内腔焊点位置空间较小,如图2所示。

车身冲压生产工艺包括4条冲压生产线和2条开卷飞剪线。4条车身冲压线由20台500吨~2400吨不同吨位大型压力机组成,形成立体化冲压,压机均为国内知名品牌的数控闭式四点机械压力机,其中2400吨的压机为国内最大的多连杆机械压机。台湾引进的开卷飞剪线用于下料,可大大提高材料利用率、生产效率及下料精度。行车均为德国进口的安博葫芦欧式结构,安全可靠。

冲压车间长144米,宽78米,占地面积11232平方,分别由30米、24米、24米的3跨厂房组成,轨顶高13.5米。冲压车间承担重型卡车驾驶室大中型冲压件的生产任务,所用板材材质主要为冷轧钢板。根据零件尺寸大小及复杂程度,分别是下料工段、A线生产区、B线生产区、小件生产区、机模修工段、物流运输。冲压线建成了高专业性的冲压车间物流运输,保证了车间生产运输工作的安全性和顺畅性,提高了工作效率。

图2 地板与侧围内板焊点位置

焊装工艺包括两条全自动柔性焊接生产线,一条生产星凯马系列车型,一条生产华菱重卡和华菱之星系列车型。主焊接线全线自动化生产,55台日本FANUC、NACHI机器人完成点焊、工件搬运上线工作,自动化率达到100%,保证了白车身强度要求及尺寸稳定性,为国内重卡焊接生产线树立了标杆。焊接分装生产线有200多台套焊接夹具及400台套焊接设备,工位间工件输送采用摩擦线、吊具等方式搬运,以减轻劳动强度;车门成型采用液压包边专机,操作方便,成形性好;辅助焊接设备多采用德国KOCO螺柱焊机、美国GRACO胶泵、日本Panasonic焊机等国际着名品牌;同时,驾驶室纵梁总成等关键工序采用中频逆变一体式焊钳等节能、环保、焊接性能优秀的先进焊接技术设备。

焊装车间南北长162米,东西宽90米,厂房建筑面积达1.4万多平方米,主要承担8-25T重型卡车驾驶室和车架总成及分总成的装焊、铆接、调整及修磨等工作。整个焊接车间门盖包边采用了可移动工作台液压包边机换模轮番生产,局部小总成采用固定式点凸焊机轮番生产外,其余总成组织均衡流水生产。

高顶顶盖与侧围焊接处空间也较小,无顶盖天窗的普顶顶盖与顶盖梁焊接处距离前风窗口约1.2m,侧顶盖与侧围之间的焊点空间只有60mm。这种产品结构特点增加了焊接工艺的复杂程度,焊接夹具复杂,在焊钳选型上比较特殊。另外产品质量技术标准高,相当于轿车水准。

涂装车间由大型二层立体钢结构厂房组成,局部设置三层。涂装工艺由前处理阴极电泳系统、烘干系统、文丘里喷漆系统和先进的机械化输送系统等组成。前处理电泳线采用积放链输送方式,槽体采用船形槽封闭式结构、喷浸结合的处理方式,可实现全自动生产。前处理材料采用国内先进的无镍磷化产品,有效保证了磷化膜的质量并且环保无重金属污染,电泳漆采用国际知名品牌,安全环保且利用率高。

焊装线装有悬挂点焊机、固定点焊机、螺柱焊机、二氧化碳气体保护焊机、油压机、涂胶机、除尘净化机、往复杆、输送线、调整线板式输送链、积放式悬挂输送链、车架铆接线等一大批比较先进的科技设备。

图3 左右侧顶盖与侧围焊点位置

总装工艺由两条对称的组装线组成,可实现双线同时生产。整车输送线分单链输送系统和台车返回系统,单链输送系统台车可以和牵引链实现自动分离,并通过头尾的升降机实现台车的自动上升和下降。同时,整车输送线单链输送系统采用爬坡式结构,降低了底盘作业高度,并在爬坡段使用机械手和拧紧机安装轮胎,既降低了工人的劳动强度,又优化了装配工艺。尾气收排系统采用室体式结构,使车辆在收烟房内进行发动调试,从而解决了车辆尾气收排的难题。车间还设有先进的ANDON系统,这是一套汽车生产综合信息管理和控制系统,能够实现快速的信息传递、物料呼叫、设备管理、设备数据采集、实时问题显示、统计分析、可动率管理、报表生成等功能。

在焊接方式上,大运的驾驶室总成采用了以电焊工艺为主,弧焊、胶结等工艺为辅的焊接方式;在车架总成上,主要以液压冷铆为主,弧焊,螺栓联接为辅的工艺方式进行;而最特别的是在车身焊装线顶盖焊接及补焊焊点上,大运汽车则不遗余力地配置了四台点焊机器人进行精密焊接。

工艺设计特点1.工艺平面布置及物流车间分总成靠近大总成布置,采用一个流生产模式,点凸焊集中布置,轮番生产。大的冲压件在冲压件周转区用叉车直送工位,工位器具内冲压件的存放数量是5辆份的倍数最大化,即每个工位器具内,按冲压件的体积大小存放5件、10件和15件等。其他冲压件及点凸焊总成采用配送制,即在配送区按同一工位所需品种放在一个工位器具上,工位器具存放数量是5辆份的倍数最大化,然后由拖挂列车送到各生产工位。车间内部物流:包括驾驶室焊装内部的物流,分工位间传送、大总成间传送以及送往涂装车间的传送这三种方式。①工位间传送:驾驶室总成焊装线、左/右侧围总成焊装线、顶盖总成焊装线和车身下部总成焊装线传输方式采用升降式托杆往复传输线,后围总成焊装线和前围总成焊装线采用双钩电动葫芦传送,左/右车门总成焊装线采用电动胶辊传输线,各分装工位小于15kg的零部件采用人工搬运,大的冲压件和总成采用助力平衡机械手搬运,分总成工位间无储存。②大总成间传送:驾驶室各分总成与驾驶室焊接总成之间采用送件制,通过空中自行葫芦线送往驾驶室总成焊装线,如车身下部总成是由车身下部线的自行葫芦从车身下部线下线工位自动将车身下部总成自动吊起、自动行走并自动落在主焊线一工位;左/右侧围总成是通过左/右侧围线的自行葫芦人工挂件自动行走送往主焊线工位后,人工卸件并装配;后围总成是通过自行葫芦在后围线工位人工挂件自动行走送往主焊线工位,人工卸件并装配;前风窗内上梁总成在顶盖区用工位器具运到主焊线工位,人工装件。前风窗外上梁总成和普顶盖梁总成在顶盖区用工位器具运到主焊线工位,人工用吊运装置将制件装在搬运机器人自动送料装置上;顶盖分总成是由顶盖线的自行葫芦在高顶盖线工位或普顶盖工位自动将顶盖分总成吊起,自动行走,自动落在主焊线工位;主焊线驾驶室焊接总成下线是采用取件制,即通过升降段由空中自行葫芦线自动将驾驶室焊接总成送往驾驶室调整线,自动落件。③送往涂装车间:换代驾驶室焊接总成在驾驶室调整线,通过升降机自动送到空中自行葫芦线送往设在本车间内的转挂平台上后,与涂装滑橇实现自动转接。2.柔性混流生产线驾驶室六大系列是建立在同一产品平台上的产品,为使生产面积有效得到利用,减少资金投入,装备投入数量少,采用柔性焊接夹具及柔性混流生产方式,分装焊接夹具柔性化率达到98%,各条生产线柔性化率达到100%。各生产线通过的产品品种如表3所示。上述生产线的生产柔性很好,得益于以下三方面。产品的平台化设计:同一系列下的6个品种共用一个产品平台,从根本上解决了多品种产品混流柔性生产的可能性,并能同时完成产品设计。例如6个品种驾驶室车身底部的主定位基准,其前端定位孔相同,单排和一排半后端定位孔不一致,但建立在同一平台,即宽窄车型变化240mm,长短车型变化615mm,在X、Y、Z三个轴线上的坐标大部分完全相同,个别不同的几个品种,其坐标变化值又相同。焊装夹具的柔性化设计:有了一个通用性强的产品平台,就为实现同一系列下的多品种产品的焊装夹具柔性化提供了便利条件。通过大量细致深入的工作和不断地完善,本项目分装焊接夹具柔性化率最终达到98%,各条主要生产线柔性化率达到100%。例如驾驶室的合成,首先通过预定位工位进行初步定位后,紧接着送到下一工位进行精确的二次定位:①驾驶室初定位工位:车身初定位工位夹具为侧摆式夹具。左/右侧围总成采用环行自行葫芦运送到上线工位上方,下降到位并人工扶助摆放到两侧可开倾式侧围框架夹具内定位夹紧后,对中翻起约35°到位;后围总成采用环行自行葫芦运送到主焊线上线工位上方下降后,采用助力平衡机械手摘件、上线,夹具定位夹紧后,人工利用专用工具将工艺定位弯片卷起定位;人工上前风窗上内板总成、人工定位将工艺定位弯片卷起定位。所有的工艺定位弯片均卷起定位后,驾驶室车身预装配完毕。②驾驶室精确定位工位:车身成型工位夹具为两侧框架对中平移式夹具,平移到位后采用气动夹头对预合成的车身进行精确定位。两侧框架夹具为二段组合式,通过气缸带动可伸展或回缩,以适应不同长度的车身。通过气缸调节对中平移距离,以适应不同宽度的车身。车身底部的定位销配备前、后两组,对短车身仅采用前一组定位销,对长车身则前、后两组定位销均参与定位。由于车身的高低是通过顶盖的高低来变化的,侧围总成的高度不变,固定顶盖总成夹具也是柔性的,即普顶、高顶通用一套夹具,采用顶盖天窗及轮廓定位,高低通过气缸伸缩实现,因此通过上述结构形式的框架夹具,即可满足长短、宽窄和高低不同尺寸车身的装配定位需要。框架夹具的伸缩及对中平移以及车身底部的前、后两组定位销的动作,均由工件识别系统与生产线电控连锁自动指示夹具切换。除了主焊线上车身为立体结构工件以外,其他总成焊装线上相对而言均是平板结构工件,而且车身宽度尺寸变化量只有240mm,因此主要对长短变化做出相应的对策。这种情况下,涉及到长短变化的点定焊夹具,均采用组合式焊装夹具,其中一种为两段固定组合式焊装夹具,一种是一段固定、另一段由气缸带动可伸缩的组合式焊装夹具。工艺装备的柔性化:从工艺角度来看,一条焊装线能否实现多品种混流柔性生产,主要取决于焊装夹具的柔性,而工艺装备相对而言,可供选择的方案余地较大。①工艺设备的柔性化:自动焊钳配备在主焊线、车身下部线和左/右侧围线上,主要应用于手工焊接不方便、焊点数量较少且不宜采用机器人焊接的低处焊点。这些自动焊钳根据其不同的焊点分组的需要,具有2~3个自由度,完全能够满足既定的多品种产品的焊接要求。②机械化装备的柔性化:如表4所示,各主要生产线均采用了升降往复杆输送线,由于产品的平台化设计,可以实现多品种产品共用一套往复杆定位基准,从而保证了输送线的混流生产。各大总成的上、下线,远距离运输均采用了空中自行葫芦系统,得益于产品的平台化设计,吊具均实现了通用,使得系统比较简单、可靠,也降低了投资。对于侧围外板、后围总成等大件的上线,采用了多达16台的助力平衡机械手,生产柔性强、对焊接操作干涉小,降低工人劳动强度。3.工艺及机械化水平驾驶室焊装车间设有8条机械化自动输送线,采用了50台机器人,包括点焊机器人、弧焊机器人、螺柱焊机器人和涂胶机器人等,凸焊螺母采用螺母自动输送机,驾驶室平均焊点自动化率达30%,其中主焊线焊点自动化率达到100%,螺柱焊自动化率达到100%。采用了一台固定式激光在线检测设备配置于车身主焊线上,配备了两台大型电动三坐标测量机和一台三维便携式测量臂,其工艺及机械化水平处于卡车行业亚洲领先水平。4.质量保证焊装车间配备双悬臂式三坐标测量机、便携式测量机、检具和质量评审间等手段对产品质量进行监控,以及在主焊线采用激光在线检测对驾驶室进行100%监控,有效保证产品质量稳定。5.安全生产技术车间内采用的机械化自动输送线和工业机器人数量较多,为了确保人员及设备安全,结合不同操作场合设置了不同的安全设施,如激光扫描、光栅保护、安全门和安全踏板等。
存在的问题和不足1.工艺设备及装备方面
悬挂点焊机控制器功能没有配备修磨挡,不方便修磨。采购的悬挂点焊机控制器配置只有焊接和调整两挡,缺少修磨挡配置,即调到修磨挡气压可降到0.1MPa以下,便于采用气动电极修磨器来修磨电极。因缺少修磨挡配置,在修磨电极时需要调整焊机进气口压力,很不方便。未设置机器人示教维修培训阵地。由于资金及厂房面积限制,未考虑机器人示教维修培训阵地,但作为大批量采用机器人车间,应设置机器人示教维修培训阵地。通过机器人示教维修培训阵地的练习,可以培养一批懂机器人使用、维修方面的人才,使生产线出现的故障及时排除,由产品更改导致机器人重新示教编程或增加新机器人的安装调试、线上机器人出现大故障更换备用机器人等工作能在很短时间内完成,保证生产顺利进行。2.机械化设备方面后围总成环行自行葫芦输送系统限于安装高度空间的限制,其运行路线下方无法布置安全网,不利于安全生产。3.工艺平面布置方面因受到新建厂房面积的限制,顶盖阵地工艺布置不合理,分装工位与顶盖线间面积紧张,物流不顺畅,尤其是顶盖线二工位夹具设计不尽合理,使得左/右侧顶盖总成人工上件困难,目前暂时由一工位先将左/右侧顶盖总成上线,到二工位后再摆正、定位夹紧。今后新项目的解决方法,一是将该工位改为自动工位,二是改变焊装夹具的结构,提高其人员接近性。车身下部总成上线距离较远。因受到新建厂房面积的限制,无法在保证车间总体工艺布局合理的前提下,使车身下部总成就近上线,造成运输距离较远、与后围总成及左/右侧围总成上线机构布置过密,增加了机械化设备的设计难度。冲压件及杂件总成的物流,从总体上看呈现倒流,这也是受新建厂房面积限制的结果。(end)